
DB Management Systems
Arango Exercises
Joel Klein – jdk514@gwmail.gwu.edu

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dependency Graph

• The graph on the right
depicts a dependency
graph for several popular
python packages.
▫ Dependencies are

packages required to use
a given package.

• Each connection depicts
that a package is a
dependency, and this is a
directed relationship.
▫ Dependencies are one

way relationships.

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Traversing our Graph

• Let's walk through an
example query using our
graph:

What packages does
Pandas depend on?

Or

For v, e, p IN 1..5 INBOUND
"pkg/Pandas" dependency
RETURN v.pkg_name

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Breaking Down Our Query
For v, e, p IN 1..5 INBOUND
"pkg/Pandas" dependency RETURN
v.pkg_name
• v, e, p: We'll grab each vertex, edge,

and path in our traversal
• 1..5: We'll look at links/jumps 1-5

levels deep
• INBOUND: Our relationships are

directed, indicating a node is a
dependency of a given package. So, we
want to follow inbound links.

• "pkg/Pandas": Using the "pkg"
collection, we want to start at the
Pandas node.

• dependency: Traveling along the
dependency edge collection

• v.pkg_name: Return the package name
for the node/vertex OpenBlas is a "dependency" of NumPy

OpenBlas -> NumPy = OUTBOUND
NumPy <- OpenBlas = INBOUND

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Traversal Step 1

For v, e, p IN 1..5 INBOUND
"pkg/Pandas" dependency RETURN
v.pkg_name

• We Start at the
"pkg/Pandas" or Pandas
node.

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Traversal Step 2

For v, e, p IN 1..5 INBOUND
"pkg/Pandas" dependency RETURN
v.pkg_name

• By default, Arango uses
depth-first search or dfs

• So, our first path from
Pandas is SciPy

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Traversal Step 3

For v, e, p IN 1..5 INBOUND
"pkg/Pandas" dependency RETURN
v.pkg_name

• From SciPy we can go to
Matplotlib or NumPy
▫ The direction chosen

can be defined, but
defaults to id ordering
(I'm deciding Matplotlib
goes first)

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Traversal Step 4

For v, e, p IN 1..5 INBOUND
"pkg/Pandas" dependency RETURN
v.pkg_name

• Since we are depth-first,
we'll continue down the
dependency line to
NumPy

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Traversal Step 5
For v, e, p IN 1..5 INBOUND
"pkg/Pandas" dependency RETURN
v.pkg_name

• Finally, we end at
OpenBlas

• Next, we would bubble
back up to NumPy,
Matplotlib, and SciPy to
explore other paths.
▫ However, looking at each

of these nodes, we can
see every dependency
was traversed

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Exercise 1

• On slide 12, write the
Arango Query to identify
all packages that depend
on Matplotlib

• On the following slides
walk through each step of
the traversal as
demonstrated on the
previous slides
▫ Feel free to add

additional slides if
needed

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Exercise 1 – Step 1

For v, e, p IN 1..4 OUTBOUND
"pkg/Matplotlib" dependency RETURN
v.pkg_name

• We Start at the "pkg/
Matplotlib" or Matplotlib
node.

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Exercise 1 – Step 2

For v, e, p IN 1..4 OUTBOUND
"pkg/Matplotlib" dependency RETURN
v.pkg_name

• As we know by default,
Arango uses depth-first
search or dfs.

• So, our first path from
Pandas is SciPy

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Exercise 1 – Step 3

For v, e, p IN 1..4 OUTBOUND
"pkg/Matplotlib" dependency RETURN
v.pkg_name

• As we can see from the graph,
from SciPy we can go to
Pandas or SciKit-Learn.

▫ From the previous slides we
know that that direction can
be chosen by id ordering.
So, I'm deciding Pandas
goes first.

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Exercise 1 – Step 4

For v, e, p IN 1..4 OUTBOUND
"pkg/Matplotlib" dependency
RETURN v.pkg_name

• Finally, we end at Keras by
going through the default
method, depth-first search.

• Next, we would bubble back
up to SciPy to explore
another path.

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Exercise 1 – Step 5

For v, e, p IN 1..4 OUTBOUND
"pkg/Matplotlib" dependency RETURN
v.pkg_name

• As we are back to SciPy to
start another path, we have
SciKit-Learn as the next line.

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Exercise 1 – Step 6

For v, e, p IN 1..4 OUTBOUND
"pkg/Matplotlib" dependency RETURN
v.pkg_name

• We then finally end up at
HuggingFace and the
traversal finally ends.

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Identifying Dual Dependency

• Looking at the graph, we
can see that there are
some instances where
dependencies double up
▫ For example – SciKit-

Learn directly depends on
Matplotlib, but also gets
that dependency from
SciPy

• So, how could we identify
these "dual
dependencies"

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal

• Traversing the graph,
we can see how many
times we visit the same
node.

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 1

• Using depth-first search
we'll count each time
we hit a node

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 2

1

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 3

1

1

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 4

1

1

1

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 5

1

1

1

1

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 6

1

1

1

1

• Given we are using
depth-first search, we'll
bubble back up to each
node to ensure we
traveled every path.
▫ We'll skip right to SciPy

though, as we can see
Matplotlib, NumPy, and
OpenBlas don't have
untraversed
dependencies

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 7

1

1

2

2

• From here, we can travel
from SciPy <- NumPy, as
we haven't traversed that
path yet.

• This marks the second
time we've seen NumPy
▫ In addition, we would

also travel down to
OpenBlas again
(depending on
vertex/path uniqueness)

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 8

1

1

2

2

• At this point we would
bubble back up to SciKit-
Learn

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 9

1

2

3

3

• From here we would
continue traversing down
Matplotlib and NumPy,
given we haven't gone
down those paths yet.
▫ Likewise, these traversals

will also hit NumPy and
OpenBlas again

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 10

1

2

3

3

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 10

1

2

4

4

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Dual Dependency Traversal
Step 10

1

2

4

4

• With these results, we
can see that Matplotlib,
NumPy, and OpenBlas
are all accessible through
more than one path
▫ This means that there is

another dependency that
already accounts for that
package

• Looking at this, we can
see SciKit-Learn could
just depend on SciPy

PyTorch

NumPy

OpenBlas

Keras SciKit-Learn

TensorFlow

SciPy

Matplotlib

PandasHuggingFace

Exercise 2

1

2

4

4

• Write an Arango query to
identify all dual
dependencies for SciKit-
Learn
▫ Refer to the next slide for

some hints

FOR v, e, p IN 1..5 OUTBOUND
"pkg/SciKit-Learn" dependency
COLLECT pkgs = v.pkg_name WITH
COUNT INTO times_seen
FILTER times_seen > 1
RETURN {pkgs, times_seen}

Example Traversal in Twitter Data

FOR v, e, p IN 1..2 OUTBOUND "users/44196397" friends

COLLECT ids = v._id WITH COUNT INTO times_seen

RETURN {ids, times_seen}

• This query finds all the friends (OUTBOUND) relationships starting at
"users/44106397" or Elon Musk
▫ Using COLLECT ids = v._id we are grouping all vertexes by the user id

▫ Using WITH COUNT INTO times_seen we are counting the number of times
each id has been seen (much like our dependency example)

End Slide

DBMS for Data Analytics

